118 research outputs found

    Online Dynamics Learning for Predictive Control with an Application to Aerial Robots

    Full text link
    In this work, we consider the task of improving the accuracy of dynamic models for model predictive control (MPC) in an online setting. Even though prediction models can be learned and applied to model-based controllers, these models are often learned offline. In this offline setting, training data is first collected and a prediction model is learned through an elaborated training procedure. After the model is trained to a desired accuracy, it is then deployed in a model predictive controller. However, since the model is learned offline, it does not adapt to disturbances or model errors observed during deployment. To improve the adaptiveness of the model and the controller, we propose an online dynamics learning framework that continually improves the accuracy of the dynamic model during deployment. We adopt knowledge-based neural ordinary differential equations (KNODE) as the dynamic models, and use techniques inspired by transfer learning to continually improve the model accuracy. We demonstrate the efficacy of our framework with a quadrotor robot, and verify the framework in both simulations and physical experiments. Results show that the proposed approach is able to account for disturbances that are possibly time-varying, while maintaining good trajectory tracking performance.Comment: 8 pages, 4 figure

    Noise-Robust End-to-End Quantum Control using Deep Autoregressive Policy Networks

    Full text link
    Variational quantum eigensolvers have recently received increased attention, as they enable the use of quantum computing devices to find solutions to complex problems, such as the ground energy and ground state of strongly-correlated quantum many-body systems. In many applications, it is the optimization of both continuous and discrete parameters that poses a formidable challenge. Using reinforcement learning (RL), we present a hybrid policy gradient algorithm capable of simultaneously optimizing continuous and discrete degrees of freedom in an uncertainty-resilient way. The hybrid policy is modeled by a deep autoregressive neural network to capture causality. We employ the algorithm to prepare the ground state of the nonintegrable quantum Ising model in a unitary process, parametrized by a generalized quantum approximate optimization ansatz: the RL agent solves the discrete combinatorial problem of constructing the optimal sequences of unitaries out of a predefined set and, at the same time, it optimizes the continuous durations for which these unitaries are applied. We demonstrate the noise-robust features of the agent by considering three sources of uncertainty: classical and quantum measurement noise, and errors in the control unitary durations. Our work exhibits the beneficial synergy between reinforcement learning and quantum control

    Monte Carlo Tree Search based Hybrid Optimization of Variational Quantum Circuits

    Full text link
    Variational quantum algorithms stand at the forefront of simulations on near-term and future fault-tolerant quantum devices. While most variational quantum algorithms involve only continuous optimization variables, the representational power of the variational ansatz can sometimes be significantly enhanced by adding certain discrete optimization variables, as is exemplified by the generalized quantum approximate optimization algorithm (QAOA). However, the hybrid discrete-continuous optimization problem in the generalized QAOA poses a challenge to the optimization. We propose a new algorithm called MCTS-QAOA, which combines a Monte Carlo tree search method with an improved natural policy gradient solver to optimize the discrete and continuous variables in the quantum circuit, respectively. We find that MCTS-QAOA has excellent noise-resilience properties and outperforms prior algorithms in challenging instances of the generalized QAOA

    paper2repo: GitHub Repository Recommendation for Academic Papers

    Full text link
    GitHub has become a popular social application platform, where a large number of users post their open source projects. In particular, an increasing number of researchers release repositories of source code related to their research papers in order to attract more people to follow their work. Motivated by this trend, we describe a novel item-item cross-platform recommender system, paper2repo\textit{paper2repo}, that recommends relevant repositories on GitHub that match a given paper in an academic search system such as Microsoft Academic. The key challenge is to identify the similarity between an input paper and its related repositories across the two platforms, without the benefit of human labeling\textit{without the benefit of human labeling}. Towards that end, paper2repo integrates text encoding and constrained graph convolutional networks (GCN) to automatically learn and map the embeddings of papers and repositories into the same space, where proximity offers the basis for recommendation. To make our method more practical in real life systems, labels used for model training are computed automatically from features of user actions on GitHub. In machine learning, such automatic labeling is often called {\em distant supervision\/}. To the authors' knowledge, this is the first distant-supervised cross-platform (paper to repository) matching system. We evaluate the performance of paper2repo on real-world data sets collected from GitHub and Microsoft Academic. Results demonstrate that it outperforms other state of the art recommendation methods

    Super-resolution microscopy and its applications in neuroscience

    Get PDF
    Optical microscopy promises researchers to see most tiny substances directly. However, the resolution of conventional microscopy is restricted by the diffraction limit. This makes it a challenge to observe subcellular processes happened in nanoscale. The development of super-resolution microscopy provides a solution to this challenge. Here, we briefly review several commonly used super-resolution techniques, explicating their basic principles and applications in biological science, especially in neuroscience. In addition, characteristics and limitations of each technique are compared to provide a guidance for biologists to choose the most suitable tool
    corecore